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CO, specifications .g. operations
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The captured CO, has to meet certain specifications (e.g. minimum
purity, composition, etc.) £ w0 :
Higher levels of impurities can cause corrosion in the pipeline q B £
system and trigger several risks during the storage phase (e.g. 8 E
leakage, mineral dissolution, erosion, etc.) o ElELELE e o
Capturing technologies don’t have the same performance in terms | Kl |
0

of the final CO, purity.

compenent ifer | Unmi ;‘“‘C‘V (|3 :) 0il &G —| USpipeline | Dynamis ng;y:;re:t
There are neither consensus on the required CO, specifications o 0ime moy oass o] <soomom] <o
nor official standards. While the purity of the CO, used for EOR g B s P
operations in USA is not very high (=96%), recent CCS studies are
in favor for very high purities (food-grade CO,). P
Lack of official standards in terms of the specifications required for s
geological storage can increase the economic uncertainties. o

Particulates
Depending on the technology adopted, the producers may need an [ e T
additional purification. iy KDITEY

MEA 1 pmol-mol-1
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* Unlike CO, capture, transportation technologies have high TRLs.

* In order to transport the captured CO, from the sources to sinks,
various modes can be used (e.g. pipelines, shipping and trucks).

« Besides purity, the phase of CO, is also a crucial factor in the
transportation process.

« The selection of transportation mode is mainly dependent on the
distance and quantity.

* For long distances, pipelines and shipping are favorable for high and
low flowrates respectively.

« Establishing a pipeline network is normally associated with high
iInvestments, therefore, having high flowrates is essential in order to
lower the unit cost.

« For extremely long distances (e.g. > 1500 km), pipelines can be
more expensive than shipping even with high flow rates.
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Unlike CO, capture, transportation technologies have high TRLs.

In order to transport the captured CO, from the sources to sinks,
various modes can be used (e.g. pipelines, shipping and trucks).

Besides purity, the phase of CO, Is also a crucial factor in the
transportation process.

The selection of transportation mode is mainly dependent on the
distance and quantity.

For long distances, pipelines and shipping are favorable for high and
low flowrates respectively.

Establishing a pipeline network is normally associated with high
iInvestments, therefore, having high flowrates is essential in order to
lower the unit cost.

For extremely long distances (e.g. > 1500 km), pipelines can be
more expensive than shipping even with high flow rates.

Costs (USD/ton CO2/250 km)

Transportation costs (USD/ton CO2)
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* CO2 can be geologically stored in various formations,
nonetheless, two mediums have caught the attention of CCS
studies (i.e. depleted oil and gas fields and saline aquifers). 2

« (CO2 is geologically trapped via three mechanisms, namely 20
physical residual and solubility trapping.

-
[4)]

« Each storage site has its own characteristics which need to be
studied and handled differently.

10

EUR/ton CO2

* Due to the characterization, infrastructure and monitoring °
costs, the economies of scale also apply to geological storage.

- Expected prices range between 1 and 22 EUR/ton CO.,,. 1] Depltd ofias ftswitnegeeywete [ M
|Z| Depleted oil/gas field with no legacy wells Zé Maximum
- Offshore storage is more expensive than onshore storage. (3] saneaquter it o g vel

« Also, using saline aquifers are more expensive than depleted
oil and gas fields.
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Capeity Capacity Capacity

= 2.9 Gt (saline aquifers) and = 9.9 Gt (oil and gas fields)

in Netherlands and = 7.7 Gt (oil and gas fields) in UK.

The individual capacities, they vary significantly between

the storage sites in the three countries.

There are 28 saline aquifers (capacities between 16 Mt
and 650 Mt) and 385 oil and gas fields (capacities
between 0.15 Mt and 7287.8 Mt).
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Long-term liability (CO, leakage)
Interdependency & monopolies

CO, prices & policies

Terminology

Information & public awareness
Public trust

Economic background
Incentives

Culture

TRL (1-9) CRL (1-6) SRL (1-5)
Technology
Range Range Range

Direct air capture 1 5 1 3 1 2.4
Absorption 1 9 5 1 4.1
Oxy-fuel 2 4 1.5 2.9 1.6 2.6

Capture Adsorption 2 7 1.5 3.4 1.6 3
Cryogenic separation 3 6 2 3.2 2.4 3.2
Fuel cells 3 6 2 3.2 2.1 2.8
Membranes 3 8.5 2 3.9 2.1 3.2
Shipping 3 7 2 3.2 1.8 2.8

Rail 6 9 3.1 3.9 2.6 3.3
Transport |Pipeline 7 9 3.6 4.3 3.1 3.6
Truck 7 9 3.8 4.4 3.2 3.7
Compression 8 9 4.2 4.6 3.6 3.9
Electro/photochemical 1 4 1 1.9 1 1.7
Use Termochemical 2 5 1.6 2.5 14 2.2
Biological 3 9 2.2 3.9 2 3.2
Carbonation 5 8 3.5 4.4 3 3.7

Other (CBM, Basalt) 2 4 1.6 2.2 1.4 2
Storage Unconventionals 2 5.5 1.7 2.7 1.5 2.3
Oil & gas fields 5 8 3.5 4.4 3 3.8
Saline formations 5 8.5 3.5 4.5 3 3.8
Unconventional EOR 3 6 2.2 3.2 2 2.8
EOR Storage increase by EOR design 6 8 3.1 3.7 2.4 3.1
Conventional EOR 7 9 3.7 4.4 3.1 3.7
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« The legal aspect is a key part in all the preceding challenges.

This can be more obvious in the German federal system due
to the various legislative spheres (e.g. state, country,
European and International).

« Establishing the required pipeline infrastructure can
obviously show the associated legal complexities in NRW.

« Realizing a CO, pipeline network necessitates several
consecutive phases (planning, permission, construction,
operations, safety, exports, etc.).

« These processes are governed by different laws and include
several authorities and entities.

« Additionally, these procedures are unprecedented in
Germany, which incur various legal uncertainties

Relevant laws for CCS in NRW

Law

Relevance

1) Gesetz zur Demonstration der dauerhaften
Speicherung von Kohlendioxid Kohlendioxid-
Speicherungsgesetz — KSpG) (carbon dioxide
storage law) (BMJ, 2012)

The German implementation of the directive
2009/31/EC (European Parliament, 2009). The
act addresses the major aspects related to CO,
pipelines (e.g. construction, liability, etc.) and
refers to the other respective laws.

2) Verwaltungsverfahrensgesetz (VwV{G)
(administrative procedures law) (BMJ, 1976)

Pipeline planning and permitting procedures of
the CO, pipelines.

3) Gesetz Uber die
Umweltvertraglichkeitspriifung (UVPG)
(environmental impact assessment law) (BMJ,
1990)

Environmental impact assessment during the
pipeline planning and permitting procedures.

4) Gesetz Uber die Elektrizitats- und
Gasversorgung (Energiewirtschaftsgesetz -
EnWG) (energy industry law) (BMJ, 2005)

As indicated by KSpG, the planning and safety
requirements for CO, pipelines are governed by
EnWG (similar to the natural gas pipelines).
EnWG also refers to the rules of the German
technical and scientific association for gas and
water (Der Deutsche Verein des Gas- und
Wasserfaches e.V. — DVGW).

5) Raumordnungsgesetz (ROG) (spatial planning
act) (BMJ, 2008)

Regional planning of CO, pipelines and project
compatibility.

6) Verordnung zur Durchfiihrung des
Landesplanungsgesetzes
(LandesplanungsgesetzDVO — LPIG DVO)
(Ordinance on the implementation of the state
planning act) (M| NRW, 2010)

Regional planning procedures of CO, pipelines
(>30cm) in North Rhine-Westphalia

7) London protocol (IMO, 2006)

Offshore CO, storage and CO, exports for
offshore storage.

8) Verordnung Uber Rohrfernleitungsanlagen
(Rohrfernleitungsverordnung — RohrFLtgV) (log-
distance pipeline ordinance) (BMJ, 2002)

9) Verordnung Uber Gashochdruckleitungen
(Gashochdruckleitungsverordnung —
GasHDrLtgV) (high-pressure gas pipeline
ordinance) (BMJ, 2011).

As there is still no ordinance for major accidents
related to CO, pipelines, both existing
ordinances can be the basis for developing a
dedicated one for CO, pipelines.
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Coupling carbon capture and utilization with the construction industry: B

Opportunities in Western Germany

Ali Abdelshafy *, Grit Walther

RWTH Aachen Universky, Chalr of Openations Marsagemens, Kackeresalle 7, 52072 Aachen, Gemany

ART LE INFO ABSTRACT
Reywords: Carbon captare and wtilization (OCU) is an essential method to sequester anavoidable OO emissions in regions:
Carbonation

Carbon eaptare and urilizatics (CCL1)
Construction industry

Process emissions

Comerete products

Waste conerete

with insufficient geological storage capacitis
in terms of the Future valne chains of some COU technalogies (e carbonation). This paper analyzes the po
tentials of coupling CCU with the supply chains of the constraction indistry by means of carbanating the con
crete products and waste concrete in the German federal state of North Rhine Westphalia, Based on extensive
data and statistical analyses, the locations and antpats of the concrete and recycling plants have been determined

. Nonetheless, there are several uncertainti

and knawledge gaps

in arder to quantify their COx sequestration capacities. Locution-allocation models hive been applied to allocate
the carben sources to the patential carban sinks and calculate the minimum fransportation costs.

The analysis shaws that the total armual sequestration capacity is up to 1 Mt COz with an average trans
partatian distance: of 37.4 km (8.3 EUR./ton). Nooetheless, some emission sources have a clear comparative
advantage in terms of their proximity to the carbon sinks a the distance rnges between 0.7 km and 99.7 k.
Alsn, some carban sinks have a comparative advantage in terms of capacities and technology readiness levels.
Therefare, the paper also presents models for the different products in order to display the patentials of each
category separately and offer more fexibility to the stakehalders.

1. Introduetion

to the snergy policy de}, Germany
lem to reach carbon neutrality by 2045 [1]. Nevertheless, the indus-
trial process emissiona are one of the major challenges to reach this goal

ding to [2-10], Cark i and BOR are the
only permanen: CCU storage technologies. Other techniques like oyn-
thesic fisels and chemicals can be considered az temporary storage sinks

22 the ©0y will be released again in the atmosphers after consumption.
While the concept of EOR iz based on wiilising the 0O, to yield the

23 they result from the prod process and cannot be mit, d even
by using carb | energy Hence, carbon
storage sinks will be needed in order to sequecter the extensive amounts
of process emizsions in Germany (65 Mt in 2018 = 5% of the tosal GHG
emissions [2]).

Although carbon capturs and storage (CCS) iz a feasible route dus to
the experience gathersd from many enhanced oil recovery (EOR) pro-
jecsm in the Last decadss expecially in Nosthemn Amesica [3], there aze
wasious chall ssociated with deploying the ! such az
public acceptance and environmental concems. Therefore, CCU can be
fvorsble in regions where social resismnce and land use challenges
exizt [4] , some additional costa d with CCS such az
purifying the OOy, infrastracture and liability & monitoring after storage
[5-7] can be avoided in caze of adopting certain CCU technologies.

* Correspanding author.
Eomail address:

https//doi.arg/10.1016/3 3
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hard oil and Ily staring it geclogically, the concept af
mineralization and carbonation iz based on the reaction of OO with the
oxides found in certain minerals and cementitions materials to generate
1 20 atable Io. The EOR ia ck i by a high
technalogy readiness leval (TRL) and there iz already an existing robust
aupply chain with more than 7,000 km of CO; pipelines connecting the
CO: zources and oil fields in the usa [11,3,12], but not in Eusope.
Recently, card T
to the necessity of finding COs-mitigation technigues Therefors, many
related research questions started to be :ddm.nd in the J.mrm
Although the ch L
analogous, their value chainz are different. Az shown in Bqa. (1) and
the mineralization technique depends on fixing the CO; in the oxides of
natural minerals (e.g. olivine, serpentine, e2c.) [13]. These minerals are

more attention dus

| principal of mi ization and
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1. Introduction

Gemany has set an ambifious pl
in Europe (310 Mt CO: in 2019
and, more specifically, energy-{
involved, emissions cannot be al
et al. 2 four industries (cement, fi
process emissions in Germany.

‘While the stee! and chemical indy
(e.g. hydrogen), the production py
process. That is why the ceme|
intemnaticnal roadmaps. It is ven|
carbon capture and utilization an|
that have significant amounts of

This paper investigates the rold
prospective supply chains, the
emissions and their techno-e
challengez. Some of these them
‘geographical features of a certair|
from the German federal state

NRW has been selected due

considered to be the hub of Genm
Europe.
The paper presents the current
NRW and the existing efficiency
Section 3 then investigates the
technologies while considering
focuses on the economic, social
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A German case study
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OIES Podcast — The Role of CCUS in Decarbonising the Cement Industry

In this latest OIES podcast James Henderson talks to Martin Lambert and Ali Abdelshafy about their recent paper entitled
“The Role of CCUS in Decarbonising the Cement Industry: a German case study.” The authors discuss why CCUS is so

important in the cement industry, and having outlined the general process of carbon capture and storage and its use in the

cement industry they talk in detail about how CO2 is captured in the various parts of the cement manufacturing process.
They also review how the CO2 is then transported to various storage points and discuss how the creation of industrial
clusters for CCUS can enhance synergy benefits, using the North Rhine Westphalia region of Germany as an important case

study. They also consider how commen infrastructure can therefore become a critical element of the business model, while

also discussing how social and legal issues need to be addressed to ensure the feasibility of any project. Finally, they outline

the future plans for further research on this topic, including work on other hard to abate sectors.
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Cost functions

Topography & infrastructure Population density

Existing pipeline network

Emissions & storage sites
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Scenario _1: hard-to-abate/process emissions of clinker
and lime industries (95 plants).

Scenario_2: All emissions (fuel & process) of clinker
and lime industries (95 plants).

Scenario 3 & 4: consider a threshold, below which the
cement and lime plants will not be a part of the network
(i.,e. 100 kt and 50 kt respectively), which result in 65
and 81 plants respectively.

Scenario 5: investigates the impact of adding the coal
and lignite power plants to the network as a method to
achieve both energy transition and security in the short
term.

Scenario_6: considers the steel plants away from the
hydrogen network as potential users of the CO,
network

Emission quantity
(tonnes COz/year)

o 10°

106
.6x107

Emission origin
() Energy production
() Cementand Lime
O Mixed (Cement and Lime)

Q Mixed (Metals)
@)
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, . . . Step AO: Start from solution obtained by taking the Minimum Spanning Tree
Parker’s model considers material, right of way, labor and Step Al: _Initiate empty solution list
miscellaneous costs in a combined quadratic function of pipeline Step Azl Jdentity umsededscs Fy I tncumbentsolution
. . ] ] . or each edge ey of the set Ey:
diameter and a linear function of pipeline length. - Add edge e, to the tentative solution
- Identify edges E, in created cycle,

. . , i Step A2.2: For each edge e; of theset E_\ {ey; }:

A cost-adjusted version of Parker’s model has been used in a recent - remove e; from the tentative solution

- Calculate capacity and cost
- Add tentative solution to solution list

study focusing on the German infrastructure design

Step A3: Find minimal-cost solution from solution list

Step A4: If this solution is better than current incumbent solution:
Liotar = (996,820 X D? + 441,912 XD + 223,522) X L + 545,537 - Set this new solution as incumbent solution
- Restart from Step Al
Else:
Itotar IS the total investment cost in € (2010) for a single pipeline in - Use Algorithm B

WhiCh, D is the diameter (m), L is the |eﬂgth in km Step BO: Start from solution obtained from Algorithm A as incumbent solution

Step B1: Initiate empty solution list

Step B2.1: For each emitter node n, in the network:

Including an added fixed cost for each of these segments would \dentify all neighbouring nodes Ny in the fll graph up to 3 graph

increase the overall cost unrealistically and hinder the optimization distance of 3
proceSS. Step B2.2: For each neighbouring n; node in Ng

- Find shortest Euclidean distance path in full graph between
n, and ng, made of edges E,,

ILioras = (1,355,675.2 x D2 + 601,000.32 X D + 303,989.92) x L -Add edges from E, to a tentative solution
- Find all cycles in tentative solution
Step B2.3: - Repeat recursively Step A2.2 from Algorithm A until all cycles
We assume a constant flow rate of liquid CO2 at 3 m/s, pipeline _________are explored, and solution trees added to solution list
. L. . . . Step B3: Find minimal-cost solution from solution list
pressure is also set to 100 Bar, giving an approximate fluid density Step B4: If this solution is better than current incumbent solution:
Of 900 kg/m3 at a temperature Of roughly 150(: - Set this new solution as incumbent solution

- Restart from Algorithm A, Step Al
Else:
- Return incumbent solution
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10?

10!

10°

Dataset Described elements

Point source CO; Installation list 2020  Point source CO2 emission volumes

Electricity, heat, and gas sector data

for modeling the German system. Existing pipeline network

German National census Population density per km

Natural Earth Rivers, Lakes, Motorway, Railways
WISE Transitional waters

CCDA CDDA protected areas, National parks
EU-DEM Slope

Feature Multiplier
Population density/km? (<250) 1
Population density/km? (250-500) 4
Population density/km? (500-2000) 9
Population density/km? (2000-4000) 16
Population density/km? (4000-8000) 25
Population density/km? (>8000) 36
Pre-existing pipelines 0.25
Railroads 3
Motorways 3
Rivers, lakes, and transitional waters 10
CDDA protected areas (excl. National parks) 10
National parks 30
Terrain slope 1-20

Lehrstuhl fir Operations Management | Wissenschatft trifft Wirtschaft 2022
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Route capacity Route capacity 9% R (7 43: Route capacity
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Results (scenarios 1 & 2) '%:,

The total cost is approximately 1.7 B EUR & average
transportation cost is more than 85 EUR/tone CO,

Route capacity
(tonnes CO:/year)

The optimized CO, network links the individual 7103
pipelines into common bigger trunks with higher = ‘-;gxig
capacities in order to exploit the economies of scale. '
The specific transportation costs vary significantly. Additional cost
(€/tonneCO:z/year) !
Increasing the emissions from scenario 1 to scenario 2, ol
increases the total costs only (10%), while the total CO, o)
transported increased more than (30%). oo

80 - 200
> 200

Therefore, the average specific cost per CO,
transported has decreased (= 62 EUR/tone CO,).

Emission quantity

Some plants have been impacted by this change such g°';:js CO./year)
as plant, while other have been barely impacted. 8106
1.3x10°

Changes in the configurations can be identified
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Scenario 3

Scenario 1

. Route capacity
Route capacity (tonnes CO:/year)

(tonnes CO:/year) — 10°

o X
— 7x103 ,
— . K —— 106
- 9.7x10° b l 10
. 1.3x107 4
: 2.7x107
I 1.9%x10’7 { |
.3
. I : . Additional cost
Additional cost Y, " 3 (€ ornaCOLlyasi)
(€/tonneCO:/year) . R
(f; <1 f v‘ Vi ] ; 1S
15 / y Z 2
E 5-10
5-10 ;
10-15 Y 10 - 15
3-8
30 - 80 ‘ ( -
80 - 200 80 - 200
> 200 o > 200
Emission quantity Emission quantity
(tonnes CO:/year) * (tonnes CO:/year) .
o 10° y o 10°
106 106
1.3x10° { 1.9x108 {




Results (scenario 5)
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Linking the coal and lignite power plants to the CO,
network has an enormous impact on all related aspects:

» Configuration
» Total costs & average specific transportation cost
» Individual specific transportation costs

The configuration of the network and the main corridors
are shaped by the biggest emitters (i.e. power plants).

Therefore, a major CO, corridor has evolved to transport
the significant CO, amounts from east to west.

While the total costs have increased two thirds (= 2.7 B
EUR), the average specific transportation cost has
significantly decreased as the total amount of CO, have
iIncreased approximately 7 times.

This change is very evident especially for the plants that
became close to the new major pipelines.

Route capacity
(tonnes CO:/year)
— 10*

— 109

— 10’

Bl 12x108

Additional cost
(€/tonneCO:/year
<1
1-5
5-10
10 - 15
15 - 30
30-80
80 - 200

> 200

Emission quantity
(tonnes CO:/year)
e 10°

106
O 1.6x107
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The hydrogen network should reach the main German
primary steel producers located in NRW, Lower Saxony

Route capacity

and Bremen- (tonnes COz/year)
~ ot
Nonetheless, two sites in Brandenburg and Saarland o oracs
would not be covered by the network depicted by the -1
roadmap.
Additional cost 7 ; ) _ : )
The steel production from these two sites is associated (€/tonnecou/yean) % N {
with 10.8 Mt CO,, which means that the capacity to s Gt | j
iIncrease by more than one-third. 10-15 \ f}
30- 80 _ _ N
Herein, a considerable capacity in Brandenburg has o oo : *{
been added, also the federal state of Saarland has \ Vi .\
been connected to the CO, network for the first time. M ' \\
Emission quantity M} H \\\
Similar to scenario 5, the increase in costs is not tronries Codlyean / e Y
directly proportional to the increase in capacities due to @fw { -
the economies of scale. PR SN f_w{tv,}
Yl




Results (comparisons) %& Operations
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« The costs and network lengths of all three storage cases (i.e. == North Sea
North Sea, the Netherlands and regional clusters) are similar for a S Nothprlands
. . . . egiona
given scenario, with small differences.

Nl ™M

N
1

Network cost
(Billion €2022)

« Interestingly, splitting the network into regional sinks doesn’t

consistently lead to lower costs. N 1 2 3 4 5 6
. . . . £ 000 nu
« Economies-of-scale effect is not limited to the national-scale CO, < II I
backbone, regional networks can also achieve cost efficiencies. £ 4000 miiLa l
2
« Pipeline is not the only costs, additional costs and factors have to £ 3000 II II l. .I II II
be taken into consideration while considering both strategies. = .1.—.2.—.3.—!4.—.5.—.6-
®
« As the economies of scale also affect the transshipment, one- i:>_~ 100 A H=
network approach is more cost-efficient. S g
E 250
- However, one network implies that any problem takes place along S .._ll_l._llll_ll
the network can influence all the emitters, while regional networks 2 0-

T 1 2 3 4 5 6
can be more resilient. < .
cenario
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Results (comparisons)
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Establishing a CCS supply chain implies that various components have to develop simultaneously and various
challenges to be overcome until a fully-functioning system is gradually realized.

CCS (unit cost)
Commercial risk

Shipping

Pipeline is economic @ quantity x

Social opposition

i Transition 5

CO2 quantities available for storage
Carbon price

Pipeline

2020

2060
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Conclusions & Outlook :3:'

Establishing a CCS supply chain implies that various components have to develop simultaneously and various
challenges to be overcome until a fully-functioning system is gradually realized

The CO, infrastructure is vital to unleash the potentials of CCS via achieving economies of scale and reducing
the specific CO, transportation costs.

Constructing such system is a capital-intensive and major modifications with significant additional costs. Hence,
envisaging an optimum system is of importance in order to minimize the costs.

The location has a vital impact on transportation costs. There is a high variance between the plants of the same
industry (e.g. cement) in the same scenario.

While some plants are close to the main pipeline trunks, other emitters are remotely located and have to build
an individual pipeline section in order to be connected to the main network.

Therefore, similar to renewables pull, such disparity can cause closures or relocations in order to minimize the
costs. Herein, the governmental role is of importance in order to achieve the required balance and stabilization.

Economies of scale vs. storage capacities & diseconomies of scale.
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