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Saline Aquifer Unmineable Coal Seams Oil & Gas reservoirs

H2O 0.4805 g/Nm3 < 500 ppm < 20 ppm

H2S 10 - 200 ppm < 200 ppm < 9000 ppmv

CO < 2000 ppm < 1000 ppm

O2 < 10 ppm < 4% < 50 ppm

CH4

N2 < 4% < 4% < 300 ppm

Ar < 4%

H2

SOx < 100 ppm

Nox < 100 ppm

NH3

C2H6 < 5% < 4% < 0.7%

C3+

Particulates

HCI

HF

HCN

Hg

Glycol

MEA

US pipeline Dynamis
Weyburn 

EOR project
Component

Study (36)

300 μmol ·mol−1

5 μmol ·mol−1

20 μmol ·mol−1

4 cmol ·mol−1

10 μmol ·mol−1

1 cmol ·mol−1

46 nmol ·mol−1

1 μmol ·mol−1

0.5 μmol ·mol−1

25 μmol ·mol−1

1 cmol ·mol−1

1.8 μmol ·mol−1

0.9 μmol ·mol−1

0.02 mg·m−3

CO2 specifications

• The captured CO2 has to meet certain specifications (e.g. minimum 

purity, composition, etc.) 

• Higher levels of impurities can cause corrosion in the pipeline 

system and trigger several risks during the storage phase (e.g. 

leakage, mineral dissolution, erosion, etc.)

• Capturing technologies don’t have the same performance in terms 

of the final CO2 purity.

• There are neither consensus on the required CO2 specifications 

nor official standards. While the purity of the CO2 used for EOR 

operations in USA is not very high (≈96%), recent CCS studies are 

in favor for very high purities (food-grade CO2).

• Lack of official standards in terms of the specifications required for 

geological storage can increase the economic uncertainties.

• Depending on the technology adopted, the producers may need an 

additional purification.
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CO2 transportation

• Unlike CO2 capture, transportation technologies have high TRLs.

• In order to transport the captured CO2 from the sources to sinks, 

various modes can be used (e.g. pipelines, shipping and trucks).

• Besides purity, the phase of CO2 is also a crucial factor in the 

transportation process.

• The selection of transportation mode is mainly dependent on the 

distance and quantity.

• For long distances, pipelines and shipping are favorable for high and 

low flowrates respectively.

• Establishing a pipeline network is normally associated with high 

investments, therefore, having high flowrates is essential in order to 

lower the unit cost.

• For extremely long distances (e.g. > 1500 km), pipelines can be 

more expensive than shipping even with high flow rates.
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CO2 storage

• CO2 can be geologically stored in various formations, 

nonetheless, two mediums have caught the attention of CCS 

studies (i.e. depleted oil and gas fields and saline aquifers). 

• CO2 is geologically trapped via three mechanisms, namely 

physical residual and solubility trapping.

• Each storage site has its own characteristics which need to be 

studied and handled differently.

• Due to the characterization, infrastructure and monitoring 

costs, the economies of scale also apply to geological storage.

• Expected prices range between 1 and 22 EUR/ton CO2.

• Offshore storage is more expensive than onshore storage.

• Also, using saline aquifers are more expensive than depleted 

oil and gas fields.
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Potential storage near NRW

• ≈ 2.9 Gt (saline aquifers) and ≈ 9.9 Gt (oil and gas fields) 

in Netherlands and ≈ 7.7 Gt (oil and gas fields) in UK.

• The individual capacities, they vary significantly between 

the storage sites in the three countries.

• There are 28 saline aquifers (capacities between 16 Mt 

and 650 Mt) and 385 oil and gas fields (capacities 

between 0.15 Mt and 7287.8 Mt).
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Potential storage near NRW
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Economic, social and legal challenges

• Terminology 

• Information & public awareness

• Public trust

• Economic background

• Incentives

• Culture

Direct air capture 1 5 1 3 1 2.4

Absorption 1 9 1 5 1 4.1

Oxy-fuel 2 4 1.5 2.9 1.6 2.6

Adsorption 2 7 1.5 3.4 1.6 3

Cryogenic separation 3 6 2 3.2 2.4 3.2

Fuel cells 3 6 2 3.2 2.1 2.8

Membranes 3 8.5 2 3.9 2.1 3.2

Shipping 3 7 2 3.2 1.8 2.8

Rail 6 9 3.1 3.9 2.6 3.3

Pipeline 7 9 3.6 4.3 3.1 3.6

Truck 7 9 3.8 4.4 3.2 3.7

Compression 8 9 4.2 4.6 3.6 3.9

Electro/photochemical 1 4 1 1.9 1 1.7

Termochemical 2 5 1.6 2.5 1.4 2.2

Biological 3 9 2.2 3.9 2 3.2

Carbonation 5 8 3.5 4.4 3 3.7

Other (CBM, Basalt) 2 4 1.6 2.2 1.4 2

Unconventionals 2 5.5 1.7 2.7 1.5 2.3

Oil & gas fields 5 8 3.5 4.4 3 3.8

Saline formations 5 8.5 3.5 4.5 3 3.8

Unconventional EOR 3 6 2.2 3.2 2 2.8

Storage increase by EOR design 6 8 3.1 3.7 2.4 3.1

Conventional EOR 7 9 3.7 4.4 3.1 3.7

EOR

Range Range

TRL (1-9) CRL (1-6) SRL (1-5)
Technology

Capture

Transport

Use

Storage

Range
• Long-term liability (CO2 leakage)

• Interdependency & monopolies

• CO2 prices & policiesE
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Law Relevance

1) Gesetz zur Demonstration der dauerhaften

Speicherung von Kohlendioxid Kohlendioxid-

Speicherungsgesetz – KSpG) (carbon dioxide 

storage law) (BMJ, 2012)

The German implementation of the directive 

2009/31/EC (European Parliament, 2009). The 

act addresses the major aspects related to CO2

pipelines (e.g. construction, liability, etc.) and 

refers to the other respective laws.

2) Verwaltungsverfahrensgesetz (VwVfG) 

(administrative procedures law) (BMJ, 1976)

Pipeline planning and permitting procedures of 

the CO2 pipelines.

3) Gesetz über die 

Umweltverträglichkeitsprüfung (UVPG) 

(environmental impact assessment law) (BMJ, 

1990)

Environmental impact assessment during the 

pipeline planning and permitting procedures.

4) Gesetz über die Elektrizitäts- und 

Gasversorgung (Energiewirtschaftsgesetz -

EnWG) (energy industry law) (BMJ, 2005)

As indicated by KSpG, the planning and safety 

requirements for CO2 pipelines are governed by 

EnWG (similar to the natural gas pipelines). 

EnWG also refers to the rules of the German 

technical and scientific association for gas and 

water (Der Deutsche Verein des Gas- und 

Wasserfaches e.V. – DVGW).

5) Raumordnungsgesetz (ROG) (spatial planning 

act) (BMJ, 2008)

Regional planning of CO2 pipelines and project 

compatibility.

6) Verordnung zur Durchführung des 

Landesplanungsgesetzes

(LandesplanungsgesetzDVO – LPlG DVO) 

(Ordinance on the implementation of the state 

planning act) (MI NRW, 2010)

Regional planning procedures of CO2 pipelines 

(>30cm) in North Rhine-Westphalia

7) London protocol (IMO, 2006)
Offshore CO2 storage and CO2 exports for 

offshore storage.

8) Verordnung über Rohrfernleitungsanlagen

(Rohrfernleitungsverordnung – RohrFLtgV) (log-

distance pipeline ordinance) (BMJ, 2002)
As there is still no ordinance for major accidents 

related to CO2 pipelines, both existing 

ordinances can be the basis for developing a 

dedicated one for CO2 pipelines.

9) Verordnung über Gashochdruckleitungen

(Gashochdruckleitungsverordnung –

GasHDrLtgV) (high-pressure gas pipeline 

ordinance) (BMJ, 2011).

Relevant laws for CCS in NRW
• The legal aspect is a key part in all the preceding challenges. 

This can be more obvious in the German federal system due 

to the various legislative spheres (e.g. state, country, 

European and International). 

• Establishing the required pipeline infrastructure can 

obviously show the associated legal complexities in NRW.

• Realizing a CO2 pipeline network necessitates several 

consecutive phases (planning, permission, construction, 

operations, safety, exports, etc.). 

• These processes are governed by different laws and include 

several authorities and entities.

• Additionally, these procedures are unprecedented in 

Germany, which incur various legal uncertainties

Economic, social and legal challenges
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Framework & Methodology
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Emitters, CO2 hubs & scenarios

• Scenario 1: hard-to-abate/process emissions of clinker

and lime industries (95 plants).

• Scenario 2: All emissions (fuel & process) of clinker

and lime industries (95 plants).

• Scenario 3 & 4: consider a threshold, below which the

cement and lime plants will not be a part of the network

(i.e. 100 kt and 50 kt respectively), which result in 65

and 81 plants respectively.

• Scenario 5: investigates the impact of adding the coal

and lignite power plants to the network as a method to

achieve both energy transition and security in the short

term.

• Scenario 6: considers the steel plants away from the

hydrogen network as potential users of the CO2

network
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Cost functions & Network optimization

𝐼𝑡𝑜𝑡𝑎𝑙 = 996,820 × 𝐷2 + 441,912 × D + 223,522 × L + 545,537

𝐼𝑡𝑜𝑡𝑎𝑙 = 1,355,675.2 × 𝐷2 + 601,000.32 × D + 303,989.92 × L

• Including an added fixed cost for each of these segments would 

increase the overall cost unrealistically and hinder the optimization 

process. 

• Parker’s model considers material, right of way, labor and 

miscellaneous costs in a combined quadratic function of pipeline 

diameter and a linear function of pipeline length.

• A cost-adjusted version of Parker’s model has been used in a recent 

study focusing on the German infrastructure design 

• 𝐼𝑡𝑜𝑡𝑎𝑙 is the total investment cost in € (2010) for a single pipeline in 

which, 𝐷 is the diameter (m); L is the length in km

• We assume a constant flow rate of liquid CO2 at 3 m/s, pipeline 

pressure is also set to 100 Bar, giving an approximate fluid density 

of 900 kg/m3 at a temperature of roughly 15°C
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Datasets & Pipeline path proposal methodology

Dataset Described elements References 

Point source CO2 Installation list 2020 Point source CO2 emission volumes (46, 38)  

Electricity, heat, and gas sector data 

for modeling the German system. 
Existing pipeline network  (40) 

German National census Population density per km (41) 

Natural Earth Rivers, Lakes, Motorway, Railways (42) 

WISE Transitional waters (43) 

CCDA  CDDA protected areas, National parks (44) 

EU-DEM Slope (45) 

 1 

Feature Multiplier

Population density/km² (<250) 1

Population density/km² (250-500) 4

Population density/km² (500-2000) 9

Population density/km² (2000-4000) 16

Population density/km² (4000-8000) 25

Population density/km² (>8000) 36

Pre-existing pipelines 0.25

Railroads 3

Motorways 3

Rivers, lakes, and transitional waters 10

CDDA protected areas (excl. National parks) 10

National parks 30

Terrain slope 1-20
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Regional Netherlands North Sea

Scen
ario

 4
Scen

ario
 5

Scen
ario

 6

Regional Netherlands North Sea

Scen
ario

 1
Scen

ario
 2

Scen
ario

 3

Results
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Results (scenario 1)
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Results (scenarios 1 & 2)

• The total cost is approximately 1.7 B EUR & average 

transportation cost is more than 85 EUR/tone CO2

• The optimized CO2 network links the individual 

pipelines into common bigger trunks with higher 

capacities in order to exploit the economies of scale.

• The specific transportation costs vary significantly.

• Increasing the emissions from scenario 1 to scenario 2, 

increases the total costs only (10%), while the total CO2

transported increased more than (30%).

• Therefore, the average specific cost per CO2

transported has decreased (≈ 62 EUR/tone CO2).

• Some plants have been impacted by this change such 

as plant, while other have been barely impacted.

• Changes in the configurations can be identified
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Scenario 1 Scenario 3

Results (scenarios 3 & 4)
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Results (scenario 5)

• Linking the coal and lignite power plants to the CO2

network has an enormous impact on all related aspects:

➢ Configuration 

➢ Total costs & average specific transportation cost

➢ Individual specific transportation costs

• The configuration of the network and the main corridors 

are shaped by the biggest emitters (i.e. power plants).

• Therefore, a major CO2 corridor has evolved to transport 

the significant CO2 amounts from east to west.

• While the total costs have increased two thirds (≈ 2.7 B 

EUR), the average specific transportation cost has 

significantly decreased as the total amount of CO2 have 

increased approximately 7 times.

• This change is very evident especially for the plants that 

became close to the new major pipelines.
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Results (scenario 6)

• The hydrogen network should reach the main German 

primary steel producers located in NRW, Lower Saxony 

and Bremen. 

• Nonetheless, two sites in Brandenburg and Saarland 

would not be covered by the network depicted by the 

roadmap.

• The steel production from these two sites is associated 

with 10.8 Mt CO2, which means that the capacity to 

increase by more than one-third.

• Herein, a considerable capacity in Brandenburg has 

been added, also the federal state of Saarland has 

been connected to the CO2 network for the first time.

• Similar to scenario 5, the increase in costs is not 

directly proportional to the increase in capacities due to 

the economies of scale.
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• The costs and network lengths of all three storage cases (i.e.

North Sea, the Netherlands and regional clusters) are similar for a

given scenario, with small differences.

• Interestingly, splitting the network into regional sinks doesn’t

consistently lead to lower costs.

• Economies-of-scale effect is not limited to the national-scale CO2

backbone, regional networks can also achieve cost efficiencies.

• Pipeline is not the only costs, additional costs and factors have to

be taken into consideration while considering both strategies.

• As the economies of scale also affect the transshipment, one-

network approach is more cost-efficient.

• However, one network implies that any problem takes place along

the network can influence all the emitters, while regional networks

can be more resilient.

Results (comparisons)
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Results (comparisons)
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Conclusions & Outlook

• Establishing a CCS supply chain implies that various components have to develop simultaneously and various 

challenges to be overcome until a fully-functioning system is gradually realized.
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Conclusions & Outlook

• Establishing a CCS supply chain implies that various components have to develop simultaneously and various 

challenges to be overcome until a fully-functioning system is gradually realized

• The CO2 infrastructure is vital to unleash the potentials of CCS via achieving economies of scale and reducing 

the specific CO2 transportation costs.

• Constructing such system is a capital-intensive and major modifications with significant additional costs. Hence, 

envisaging an optimum system is of importance in order to minimize the costs.

• The location has a vital impact on transportation costs. There is a high variance between the plants of the same 

industry (e.g. cement) in the same scenario. 

• While some plants are close to the main pipeline trunks, other emitters are remotely located and have to build 

an individual pipeline section in order to be connected to the main network.

• Therefore, similar to renewables pull, such disparity can cause closures or relocations in order to minimize the 

costs. Herein, the governmental role is of importance in order to achieve the required balance and stabilization. 

• Economies of scale vs. storage capacities & diseconomies of scale.
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