

Industrietransformation bedeutet: Umstellung der industriellen Prozesswärme

Strom 34 TWh, 8 %

Erneuerbare

26 TWh. 6 %

- regenerativen Energien oder regenerativem Strom bereitgestellt
- Prozesswärmebedarf in NRW ca. 180 TWh

- a) Hierunter fallen u. a. Raumwärme (z.B. Hallenbeheizung) und Warmwasser.
- Hierunter fallen z. B. mechanische Energie (für Pumpen oder Antriebe), Beleuchtung, Informationstechnik und Kommunikation.
- c) Mineralöl, Gas und Kohle
- d) Strom verursacht in der Anwendung keine Emissionen. Da es sich hierbei um den Strommix aus dem Netz handelt, sind allerdings der aktuelle EE-Anteil und die resultierenden CO₂-Emissionen bei der Stromerzeugung zu berücksichtigen.
- e) Unter Erneuerbare fallen z. B. Biomasse, Geothermie und Solarthermie

Industrie 657 TWh

Verkehr 637 TWh

Haushalte 670 TWh

Gewerbe, Handel, Diensleistungen (GHD) 354 TWh

Endenergiebedarf

nach Sektoren

Prozesswärme 440 TWh

Industrie

657 TWh, 28 %

Prozesswärme 440 TWh. 67 %

9 %

Sonstige Wärme^a 58 TWh

Elektrizität^b 159 TWh

fossile Energieträger^c 317 TWh

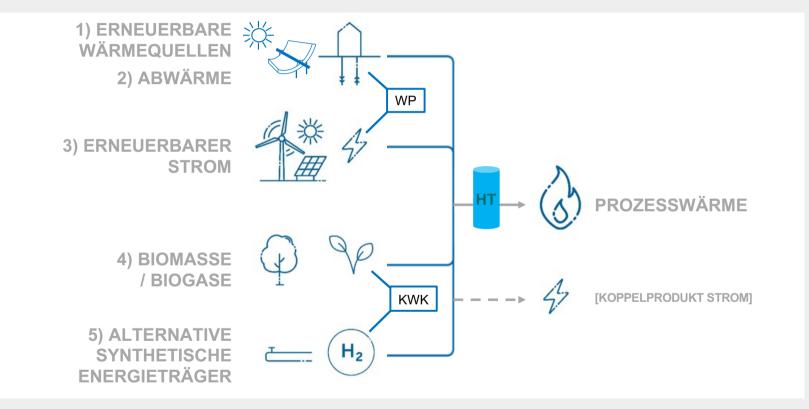
9 %

5 %

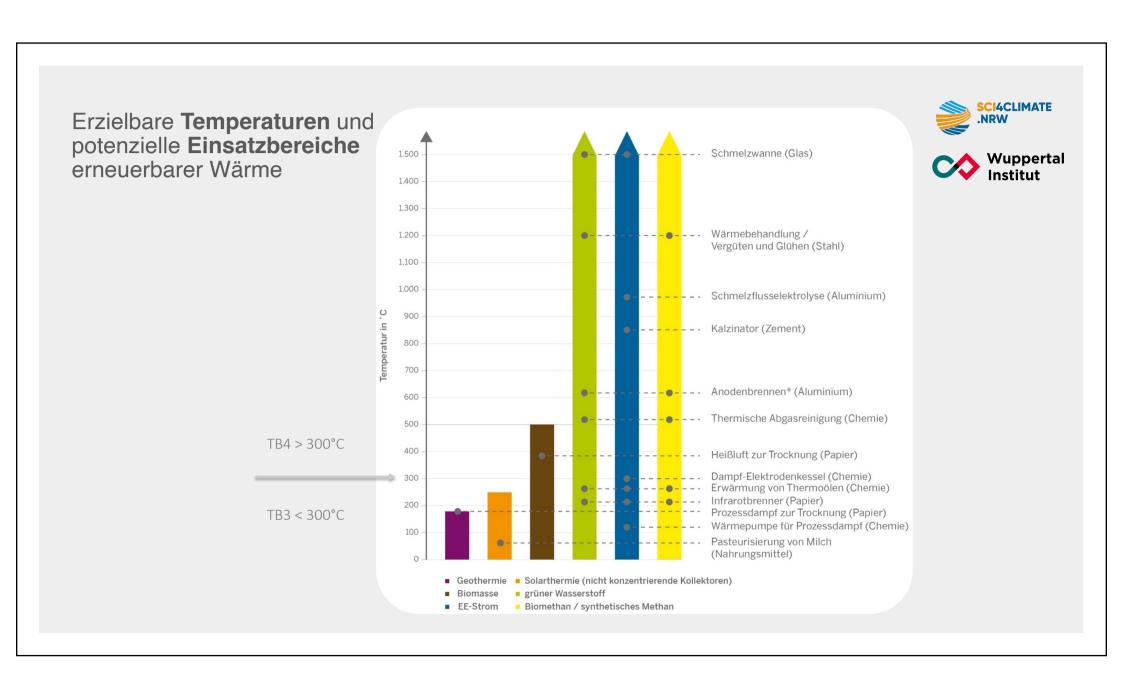
Strom^d 34 TWh Erneuerbare^e 26 TWh

Grafik: IN4climate.NRW

Fernwärme 42 TWh


Sonstige 21 TWh

Hebel für klimaneutrale industrielle Prozesswärme:


Erneuerbare Wärmequellen, Energieträger und Technologien

Grafik: IN4climate.NRW, eigene Ergänzungen

Diskussionspapiere der Arbeitsgruppe "Industrielle Prozesswärme" von IN4climate.NRW (Hrsg.):

"Industriewärme klimaneutral: Strategien und Voraussetzungen für die Transformation"

INHALT

UNSERE KER	RNBOTSCHAFTEN	3
ABKÜRZUNG	SVERZEICHNIS	4
1.	ZIEL UND KONTEXT	6
2.	HEUTIGE UND ZUKÜNFTIGE ANFORDERUNGEN	7
2.1	Heutiger Wärmebedarf	9
2.2	Entwicklung des Wärmebedarfs	.10
2.3	Heutige fossile Wärmebereitstellung	.12
2.4	Zukünftige Wärmebereitstellung auf Basis Erneuerbarer Energien	.13
3.	VIER-STUFEN-MODELL DER KLIMANEUTRALEN WÄRMEVERSORGUNG	10
3.1	Energieeffizienz sowie Abwärmenutzung	_
3.2	Erschließung lokaler erneuerbarer Wärmequellen	
3.3	Elektrische Wärmeerzeugung / PtH	
3.4	Alternative Energieträger	
5.4	Alternative Lineigietrager	23
4.	HERAUSFORDERUNGEN DER WÄRMEWENDE	26
5.	WIE MACHEN WIR UNS JETZT AUF DEN WEG?	30
LITERATUR		33

www.energy4climate.nrw/industrie-produktion/in4climatenrw

Industriewärme klimaneutral (Juni 2021)

Prozesswärme für eine klimaneutrale Industrie (Mai 2022)

Das 4-Stufen-Modell zur Dekarbonisierung industrieller Prozesswärme Erarbeitet von AG "Industrielle Prozesswärme" von IN4climate.NRW

- 1 Steigerung der Effizienz (Energie und Exergie)
 - z. B. Prozessoptimierungen, interne und externe Abwärmenutzung
- **+ 2** Erschließung erneuerbarer Wärmequellen
 - d. h. Solarthermie, Tiefengeothermie
 - + 3. Elektrische Wärmeerzeugung (mit EE-Strom)
 - z. B. Elektrodenkessel, Induktion
 - + 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)
 - z. B. neuartige Brennertechnologien, Brennstoffzellen

100 % CO₂-Vermeidung

(der direkten Emissionen)

1. Stufe: Effizienz & Abwärme

- 1 Steigerung der Effizienz (Energie und Exergie)
 - z. B. Prozessoptimierungen, interne und externe Abwärmenutzung
- + 2 Erschließung erneuerbarer Wärmequellen
 - d. h. Solarthermie, Tiefengeothermie
 - + 3. Elektrische Wärmeerzeugung (mit EE-Strom)
 - z. B. Elektrodenkessel, Induktion
 - + 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)
 - z. B. neuartige Brennertechnologien, Brennstoffzellen

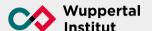
X %
CO₂-Vermeidung

(der direkten Emissionen)

1. Stufe: Effizienz & Abwärme

Verringerung des eigenen Wärmebedarfs durch:

- Prozessoptimierung bzw. -umstellung
 (z.B. Absenkung der Temperaturen, Low-Ex-Konzepte)
- Vermeidung bzw. Verminderung von Wärmeverlusten (z.B. Wärmedämmung)
- Rückführung der Abwärme in den Prozess (ggf. mittels HT-WP)
- Betriebsinterne Verwendung der Abwärme im Gebäudebereich (z.B. Erwärmung der Hallenluft)



Oder anderweitige Nutzung von Abwärme:

- Umwandlung der Wärme in andere Energieformen (Absorptionskälte, Verstromung)
- Einspeisen der Abwärme in ein Fernwärmenetz

2. Stufe: Erneuerbare Wärmequellen

- Steigerung der Effizienz (Energie und Exergie)
 - z. B. Prozessoptimierungen, interne und externe Abwärmenutzung
- + 2 Erschließung erneuerbarer Wärmequellen
 - d. h. Solarthermie, Tiefengeothermie
 - + 3. Elektrische Wärmeerzeugung (mit EE-Strom)
 - z. B. Elektrodenkessel, Induktion
 - + 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)
 - z. B. neuartige Brennertechnologien, Brennstoffzellen

y %
CO₂-Vermeidung

(der direkten Emissionen)

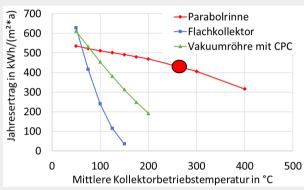
2. Stufe: Erneuerbare Wärmequellen

Solarthermie & Tiefengeothermie

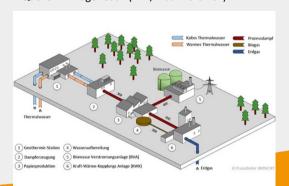
(+)

Im Betrieb unabhängig von Energiepreisen und -importen

Solarthermie (in Kombination mit Wärmespeicher)


- kann auch in unseren Breitengraden die Prozesswärmebereitstellung bis max. 120°C (nicht-konzentrierend) bzw. 400°C (konzentrierend) unterstützen
- z.B. Nahrungsmittelindustrie bzw. allgemein NT-Prozesse (Bäder etc.) auch in typischen HT-Branchen
- Kurzfristig verfügbare (hybride) Fuel-Saver-Technologie

Tiefengeothermie:


- kann hier (in NRW) bis ca. 180°C kontinuierlich (!)
 Prozesswärme bereitstellen
- Geothermie Standortcheck NRW: <u>www.geothermie.nrw.de</u>

Erträge Solarthermie Potsdam Quelle: D. Krüger et al. (DLR, Fraunhofer ISE)

3. Stufe: Elektrifizierung (Power-to-Heat)

- 1 Steigerung der Effizienz (Energie und Exergie)
 - z. B. Prozessoptimierungen, interne und externe Abwärmenutzung
- **+ 2** Erschließung erneuerbarer Wärmequellen
 - d. h. Solarthermie, Tiefengeothermie
 - + 3. Elektrische Wärmeerzeugung (mit EE-Strom)
 - z. B. Elektrodenkessel, Induktion
 - + 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)
 - z. B. neuartige Brennertechnologien, Brennstoffzellen

Z %
CO₂-Vermeidung
(der direkten Emissionen)

3. Stufe: Elektrifizierung (Power-to-Heat)

Bsp. Hochtemperatur-Elektroheizer & Power-to-Heat(-to-Power) Wärmebereitstellung und Speicherung bis 1000 °C

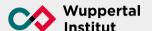
Wärmespeichermedien sind aus der CSP-Anwendung bekannt: Flüssigsalz bis 560 °C
Festkörper und Partikel bis 1000 °C

Laufende Forschung & Entwicklung:

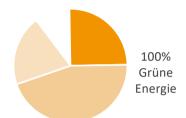
Hochtemperatur-Elektroheizer angepasst an Medien, Temperatur und Leistungsgröße

Temperatursteigerung Flüssigsalzspeicher, Alternativkonzepte

Wärmeübertrager angepasst an Medien und Bedingungen z.B. Direktkontakt


Projektbeispiel Chemiebranche:

• TransTES-Chem - PtH-to-CHP mit Wärmespeicher als neue Lösung


Grafik: DLR

4. Stufe: Alternative Energieträger

- 1 Steigerung der Effizienz (Energie und Exergie)
 - z. B. Prozessoptimierungen, interne und externe Abwärmenutzung
- **+ 2** Erschließung erneuerbarer Wärmequellen
 - d. h. Solarthermie, Tiefengeothermie
 - **→ 2** Elektrische Wärmeerzeugung (mit EE-Strom)
 - z. B. Elektrodenkessel, Induktion
 - + 4. Alternative Energieträger (Grüner H₂, Biomasse, Biomethan, synthetisches Methan, u. a.)
 - z. B. neuartige Brennertechnologien, Brennstoffzellen

100 % CO₂-Vermeidung

(der direkten Emissionen)

4. Stufe: Alternative Energieträger

PtG (H₂, Biogas und SNG) aus Effizienzgründen möglichst auf Hochtemperaturanwendungen beschränken

Direktelektrische Wärmeerzeugung (PtH)

Transformator / Transport ≈ 98%

Elektrodenkessel (PtH) ≈ 99%

EE-Strom 100%

98%

Wärme aus Wärmespeicher Wärme aus Wasserstoff (PtH-TES)

(PtGtH)

Wärme aus synthetischem Methan (PtGtH)

SCI4CLIMATE

Projektbeispiele Wasserstoff

- Glasindustrie: HyGlass, COSiMa
- Gießereien: **InnoGuss**
- Stahlherstellung tkH₂Stahl

Grafik: IN4climate.NRW mit eigenen Ergänzungen (PtH-TES: DLR)

Fazit

- Klimaneutralität erfordert auch **Transformation industrieller Prozesswärme**, diese ist **komplex** (diverse Temperaturen, Medien, Prozesse...) und muss **gesamtsystemisch** (sektor-, stakeholder- und branchenübergreifend) angegangen werden.
- Effizienzsteigerungen sind prioritär, Vier-Stufen-Modell gute Hilfestellung für weitere Priorisierung des Energieeinsatzes
- Erneuerbare Wärmeversorgung
 - erfordert individuelle, temperaturangepasste Lösungen und frühzeitige Evaluierung möglicher lokaler Wärmequellen
 - Tiefengeothermie und Solarthermie können für einige Branchen und NT-Anwendungen wichtige Beiträge leisten
- Durch **Sektorenkopplung** (KWK, PtH, PtG), **Hybridisierung** und **Flexibilisierung** wichtige Beiträge zur Systemintegration von EE-Strom und zur Stabilisierung der Stromnetze
- Technologienentwicklung:
 - Vollständige oder teilweise **Elektrifizierung** (inkl. HT-Wärmepumpen)
 - Einsatz von grünem Wasserstoff, biogenen und anderen alternativen Brennstoffen
 - Solarthermie (auch konzentrierend)
 - **(Hochtemperatur-)Wärmespeicher**, um erneuerbare Energiepotenziale besser auszuschöpfen, Systemkosten zu minimieren und Systemdienstleistungen zu erbringen.

Dietmar Schüwer | dietmar.schuewer@wupperinst.org

Bildnachweis: © iStock, © NRW.Energy4Climate

Vielen Dank!

NRW.Energy4Climate GmbH Kaistraße 5, 40221 Düsseldorf